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Axially symmetric motion of a stratified, rotating
fluid in a spherical annulus of narrow gap
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A linear theory is presented for the steady, axially symmetric motion of a strati-
fied fluid in & narrow, rotating spherical annulus with a spherically symmetric
gravitational field.

The fluid is driven by a combination of differential rotation of the two shells
and differential heating applied at the surfaces of the spheres.

It is shown that the effect of stratification becomes increasingly important
at lower latitudes with the Ekman layers on the spheres’ surfaces fading in
strength as the geostrophic interior velocities themselves tend toward the shell
speeds at lower latitudes.

The singularities in the geostrophic solutions at the equator are removed by
a boundary layer whose detailed structure depends on the ratio of horizontal to
vertical mixing coefficients of momentum and heat.

1. Introduction

The fascinating nature of the dynamics of rapidly rotating fluids is due pri-
marily to the dominance of Coriolis forces acting on the fluid’s motion in planes
perpendicular to the rotation axis. For a fluid constrained to flow in thin sheets
on the surface of a sphere (a case of obvious geophysical interest) the geometrical
constraint inhibits velocities and accelerations in the direction perpendicular to
the sphere’s surface, and so the important Coriolis forces are those which act on
the velocities tangential to the sphere’s surface. Since these horizontal Coriolis
forces depend on the local component of the rotation perpendicular to the sphere’s
surface and hence on the sine of the latitude, the Coriolis forces must become
small and finally vanish as the equator is approached.

The equatorial region is thus a very special region in which the dynamical
nature of the flow although affected by rotation may be quite different from that
at higher latitudes where the rotational constraint more powerfully asserts itself.
Questions of obvious interest then are the extent of the equatorial region, the
nature of its dynamics and the manner by which the motion at higher latitudes,
dominated by rotation, merges into the equatorial region.

In an effort to throw some light on these questions this paper considers the
steady, axially symmetric motion of a thin stably stratified layer of fluid between
two concentric spherical shells. The fluid motion is produced by both differential
rotation of the shells and an applied surface differential heating. The introduction
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of stratification is an attempt to consider a model of greater geophysical interest.
The motion of a homogeneous fluid in a similar geometry has been considered by
Stewartson (1966) (without any restriction of the thinness of the shell of fluid.)
The motion, as in the study of Stewartson’s, is limited to almost rigid rotation;
that is, the motion relative to the mean rotation of the spheres is assumed to be
sufficiently small so that a linear dynamical theory is valid.

The axially symmetric motion investigated in this paper may also be of interest
in the context of tropical meteorology. Although the general circulation of the
earth’s atmosphere in middle latitudes is very asymmetric, this asymmetry
becomes less pronounced in equatorial regions where an axially symmetric model
may be appropriate (Palmen 1963) as a first approximation. Moreover, as
Charney (1968) has pointed out theories based on instability arguments for the
development of smaller scale features of the tropical circulation (such as the
inter-tropical convergence zone) which depend on other factors such as heat
released by condensation of water vapour, may well require first the results of
a ‘dry’ tropical circulation as a starting point for the mean field.

In a recent paper (Barcilon & Pedlosky 1967) it was shown that a critical
parameter governing the nature of the bulk of the fluid motion for a stably
stratified rotating fluid in ‘flat’ geometries was the ratio o:S/E*%, where
_ vagAT v

o8 = ™ F=gp

where « is the coefficient of thermal expansion, g the acceleration of gravity,
AT|[L the basic stable temperature gradient, 2 the mean rotation, v the kinematic
viscosity, k the thermal conductivity while L is a characteristic scale. When the
ratio is large the fluid acts, in the main, as if it were substantially stratified. Now
oS/ E%is proportional to Q~%, and one might suppose that for the sphere Q should
be replaced by Qsin § where 6 is latitude. This is indeed what will be shown to be
the case by detailed calculation below, with the result that the fluid acts more and
more substantially stratified in the sense discussed in Barcilon & Pedlosky (1967)
as the equator is approached.

2. The model

Consider a spherical annulus of thickness D, the inner sphere of which has
radius R, where D < R. The spherical shells are very nearly rotating at angular
velocity 2 about an axis passing through the poles of the sphere. The co-ordinate
system is chosen so that the directions north, east, ete., have their usual meanings.
The co-ordinate ¢ measures latitude, r is the spherical radius of a field point
while (%, », w) are the velocities to the east, north and vertical, respectively. The
fluid in the spherical annulus is assumed to be stably stratified. The direction of
the effective gravitational force is taken to be radial which implies that the
centrifugal force due to the mean rotation is neglected. This requires that
Q2R?/gD < 1. Furthermore, the fluid density variations are assumed to be
linearly related to its temperature variations which in turn are considered small
enough for a Boussinesq approximation to hold, i.e. for the fluid to be very nearly
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incompressible, and only the buoyancy effects of variable density are considered
in the momentum equations. In order to consider a model of geophysical rele-
vance the viscosity and diffusivity of temperature must be considered as para-
metrizations of small-scale turbulent mixing processes. It is natural therefore
to allow that the transport coefficients need not be the same for horizontal as well
as vertical fluxes of momentum and heat. The theory will be developed with the
ratio of the horizontal to vertical mixing coefficients as a free parameter and the
solutions in various parameter régimes will be discussed in detail. It should be
pointed out that the difficulty in producing the spherically symmetric gravita-
tional force of this theory in the laboratory de-emphasizes the importance of what
might be called the laboratory situation in so far as the viscosity coefficients are
concerned.

Non-dimensional variables, denoted by primes are defined as follows: if p, p
and 7" are the pressure, density and temperature of the fluid then

r =R+ J0R2,

(u,v) = U@'(4,2"), v'(0,2"),
w= 00w (0,2"), T =Ty+AT,2'+(2QRU|gaD)T"(0,7'),

p = py(l—a(T—1Ty)),
P = po—pogD2" + AT, pygD?*}2'2 + 2QU Bp,p’(0,2'),

where § = D/R, « is the coefficient of thermal expansion, U is a horizontal
velocity scale which will later be related to the boundary conditions and 7}, p,
and p, are constant reference levels for 7, p and p. Note that the dependent
variables are functions of z' = r — R/éR.

The equations of motion in terms of the non-dimensional variables appropriate
for linear, axially symmetric steady motion (after dropping the primes from the
dimensionless co-ordinates) are

2
—vsin0+8w00s0—EiI[ 1 9 0au v ] &[8?‘ 283u]

cos 636 °**” 36~ cos? 0z* oz’
(2.1a)
usin0=—2—§ By [ﬁéaﬁo 0%‘8&2@] By [2§+23 ] (2.15)
—8ucos0=—a—p+T 85 [Olsa%cosﬁgg—)—-(;su;—&]
+62E"[58”2’ 267 ] (2.1¢)
wS = i O s @19
%%+28w+go-ls—aa~0(cos Ov) = 0. (2.1¢)

In these equations the spherical radius 7 has been approximated by the constant
R when undifferentiated.
26-2



404 J. Pedlosky

The following non-dimensional parameters have emerged:

by = vy/QR?, the ‘horizontal’ Ekman number;
B, = v, [QD? the ‘vertical’ Ekman number;

& = DR, the aspect ratio;

S = a%AZ—%;D, the stratification parameter;
Oy = Vy/Ky, the ‘horizontal’ Prandtl number;
oy = VplKkp, the ‘vertical’ Prandtl number;

where vy, K3 Vg, K are the mixing coefficients for momentum and heat in the
vertical and horizontal directions respectively.
The boundary conditions are:

(u,v,w) = (up(6),0,0) on z=1, (2.2a)
(u,v,w) = (4,(0),0,0) on 2=0, (2.2b)

while on the outer and inner spheres the radial heat flux will be specified, i.e.

%—g =Hy0) on z=1, (2.2¢)
% =H(0) on z=0. (2.2d)

Naturally the solution must satisfy conditions of regularity at the poles.
In the analysis which follows, £y, B, S and & will all be taken to be small
parameters, but for convenience the additional restriction that

S< B}
will be observed.

The boundary condition (2.2a) could easily be replaced by a condition specify-
ing the stress on z = 1, which might be more relevant in a geophysical context.
The condition (2.2a) is chosen because the resulting motions provide a more
interesting interplay between the convection of heat and the dynamics. The
alternate possibility of specifying the stress on z = 1, while leading to a rather
trivial interior flow, in fact will yield the same sort of equatorial problem as given
by the conditions (2.2). This will be discussed below.

Since E; and E are small the approximate solutions to be found will be of
boundary-layer type.

Finally, the scaling velocity U is chosen such that

agD?

=208 T

where H, is a characteristic value of the latitudinally varying applied heat flux.
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3. The Ekman layers

Inregions where @ = O(1),1i.e.removed from the equator, the dynamic variables
may be written as

u = ug(0,2)+ap(0, ) +0,00,8,), (3.1a)
v = By (0,2) +57(0,4,) + 5,00, &), (3.1b)
w = Bhwy(0,2) + By®,(0, &) + Bb (0, &), (3.1¢)
p = py(0,2)+8EEBr(6,8) + SBEB(0, ), (3.1d)
T = Ty(0,2) + B} 0y 8T(0, &) + B 03 ST(0, &) (3.1¢)

The subscripted I variables represent the dynamic variables in the interior
of the fluid removed from the direct viscous effects of the boundaries. The tilde
variables represent the necessary correction functions which must be added to
the interior variables within the Ekman layers near z =0 and z= 1. The T
subscripted tilde variables are the boundary layer corrections required near
z =1 and go to zero as §1=(1—z)/E,i}

becomes large. Similarly the L subscripted tilde variables represent the Ekman
layer corrections near z = 0 and go to zero as

& =2/E}

becomes large. The characteristic thickness of the Ekman layer is, of course E}.
The equations for the lowest-order correction functions in the layer near z = 0,
for example, are,

~ . 1 32?ZL
—Ulena—E"ag—%, (3.2(]/)
o 1oy,
uLsmﬁ—E—ég—%, (3.2b)
82%1—: = 8y cos 0+ oy, SE, T}, (3.2¢)
2
. 1T,
Wy, = § 'a_gg 5 (3.2 d)
oy, 1 ¢ ~
a—gz' = —mgpcosﬁvb (3.28)
which, in conjunction with (2.2b), yield as solutions
Ty, = (ug(6, 0) —uy) e~% 500" cog (£, |sin O|3), (3.3a)
¥, = (ug(0, 0)—uy) e~4: 506l sin (&, |sin O|F) sgn 6, (3.3b)
N sgnf o cos . .
by, = Eﬂl:ng? 0 l:(uI(O’ 0)—uy) WF} e-talsmol gin (¢, |sin 4|t + i—n)] , (3.3¢)
where sgn 0 = sin 0/|sin 6).
Since w,(f, 0)+ @&(0,0) = 0, we must have
wy(6,0) = sgnf 0 cosO(ur(0,0)—u;) (3.4)

" 2cos0 00 [sin 6|} ’
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which provides one boundary condition for the interior flow on z = 0. According
to (3.1¢) the correction to the heat flux in the Ekman layer is O(o 8); thus if
o8 < 1 the interior temperature must itself satisfy (2.2d), i.e.

(8T 02) (0,0) = Hr(0), (3.5)

which provides the other boundary condition for the interior flow on z = 0. In
fact the estimate for the amplitude for the Ekman layer correction temperature
is conservative for, as we shall see, when oS > E}},, w is O(&y /oy S) so that the
heat flux correction due to the Ekman layer is never greater than E}*l‘}

As the equator is approached the Ekman layer analysis becomes increasingly
invalid. The thickness of the layer is proportional to |sin®|—%. In this linear
analysis the approximations fail when

0 = O\,

which is when the Coriolis force dwcos@ in (2.1a) can no longer be neglected.
When & = O(1) and vy = v}, this condition becomes identical with the criterion
for the validity of the Ekman layer results deduced by Stewartson (1966).

We shall see that, because of the stratification, this limit in latitude on the
Ekman layer validity is too conservative. One of the more interesting features
of the following analysis (§ 4) is the effect that stratification has in extending the
region of validity of the Ekman layer results.

The boundary layer near z = 1 is essentially the same as near z = 0 and yields
as boundary conditions for the interior flow

_ sgné 9 (ug(6,1)—ug)cosd
"~ 2cos6 00 |sing|? ’
(8T3/22) (6, 1) = Hyp(0). (3.7)

w0, 1) (3.6)

4. The geostrophic interior

In the interior of the fluid, at latitudes such that 6 = O(1), the dynamic
variables are represented by the I subscripted variable which satisfy the follow-
ing interior equations to lowest order if § < E%,

ursinf = — dp, /a0, (4.1a)
.o, 111 9 our  uy  Eg Pu,

_Ulsmo_2[00508790030W—00320+E;~3§]’ (4.15)
T; = op;]oz, (4.1¢)

owy E}‘li 0
e cosﬁ(’)_ﬁcosavl_o’ (4.1d)

2

o, TS _ 8T EBgoy 1 0 40Ty (4.1e)

B =y E;chosaééc 00

Thus to O(E%}) wy is a function only of # and with (3.4) and (3.6) it may be written
in terms of 7%, viz:
sgnf & cosf

1 o1 "~ g
w;(0) = " 4cos6 o0 ]sinﬁ]é{(uT_uL)-l_sinﬁb_ﬁfo 76,7 dz } (4.2)
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It is convenient to introduce the variable G, defined as follows,
P L
20~ 2y2F} |sin 6|2 o 00
where V2 = By 0/ E, 0. In terms of G, 07790 is

(0,2")dz, (4.3)

o1y ap S
I -
20 2y2E} |sin 0|2

1
(1+ 0y 8/2y2E} |sin 0])- f G0,2')dz’. (4.4)
0

The reason for introducing & is that it satisfies the relatively simple equation,
derivable from (4.1¢), (4.2) and (4.3), viz.

2G L1 —Qcosﬁﬁ— G } __sgnboyp8 0 1 0 cosO(ug—uy)

022 cos 0 86 80 cos26] 2F} @0cosfd6  [sinf[t
(4.5)

The solution for G may be found in a series of associated Legendre functions of

ordar 1. The solution for the more physically meaningful interior temperature
gradient can be found and can be shown to be

o,  AO)
0 1+A(6)

(Up—ug)sin 0

® coshl,(z—}) A(6) 2 1 }
2 [“" { cosh, TEA@)1, Wnbhdh

sinhl,(z—3})

B “snhl,
where A(6) = o, 8/2y? |sin 03B},

B =n(n+1)y2
Since ug(0, 1) +u7(0,0) = ug + up, (4.7)
from (3.4), (3.6) and (4.1d) while

] P (sin6), (4.6)

sinaa—a“zl = _36_170} (4.8)

from (4.1a) and (4.1¢), u;(6,z) may be found from (4.6) and is
A(0)

g = 3(up+ug) +T/\(0) (wp—ug) (2—3)
% o, [sinhl, (z—%) A0) 2
- [“ { coshil, ~ 1+A0)1,

n=1 ln
+& coshl,(z—3%)
l : sinh 47,
_ sgnd _8_[ cosO wp—uy
4cos620 | [sinb| 1+A(0)
1 0 cosf 2
_4cos059]sin0|%n§1a

(z— }) tanh %ln}

() (&f
— coth %ln}] 1%9—) (4.9)

n

and w;=

2 tanh }l,

= (1) (qf
"I T+ A0) P (sinf). (4.10)
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The coefficients «,, and g, can be found using (3.5) and (3.7), i.e.

A7
a, = ntl Iﬁiﬂ) P, (sin 6) cos 6 df ———22 coth 3, ,
2 i 2 l,
i —
g = 2n+1 Hy(0) HL(G) P, (sin 0) cos 6 dg 2ER tanh } l
2 ~3n 2 l,

There are several features of interest in the general nature of this interior
solution.

The most obvious feature is the singularity in «; as 6 tends to zero. This occurs
for those terms in the sum in (4.9) for which P()(0) # 0, i.e. for » odd. Since
P(sin 0) is an even function of 8 for n odd that part of the solution for %; which
is singular at 8 = 0 is odd about the equator and is O(6-1) as the equator is ap-
proached. It is also interesting to observe that this singularity is present only in
that part of the solution which is thermally driven. If H, = H; =0 then
&, = B, = 0 and the solution for %; would consist solely of the first two terms of
(4.9) which are non-singular across the equator. This mechanically driven solution
e =1 A9) 1 4.11

Urnr = E(uT+uL)+m(uT"—uL) (z—1%) (4.11)

is quite simple and informative. It is remarkably similar to the solution found
for a rotating stratified cylinder of fluid by Barcilon & Pedlosky (1967). When
the fluid is unstratified the interior velocity is simply the mean of u, and u;, for
then A = ¢, 8/2y? |sin 63 E} is zero. When ¢S > 2y2E} |sin 6|} the interior
zonal velocity is no longer independent of z but varies linearly from u; on z = 0
to up on z = 1. Thus as the fluid becomes more and more substantially stratified
the interior velocity itself satisfies the no-slip boundary conditions on z = 0, 1
with the Ekman layer velocities simultaneously becoming weaker. The very
important feature of the spherical geometry is that the condition (4.11) becomes
more readily satisfied as ¢ goes to zero. Hence, in the mechanically driven
solution the effect of the stratification becomes more important as the equator
is approached and the Ekman layer corrections are reduced. Thus, although the
Ekman layer analysis fails at the equator, it is of no consequence, for the effect
of the stratification eliminates the need for the Ekman layer. This is true for the
general solution, i.e. for large A(@) (6 — 0)

ur ~ ur,+2(Up—ur)

3 § o [sinhl, (z—3)—2(z— 1) sinh §,
o) l coshil,
ﬁn coshl,(z— 1)~ cosh 4,7\ P(0)
T, sinh 31, o - 12
Thus, in general Ur YUy on z= 0’} (4.13)
Uy —>up on z=1,

as 0 - 0. The Ekman layer to lowest-order fades away as the equator is
approached.
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If a stream function for the interior meridional motion is defined such that
i
Y (0) = f wycos 8do,
)

thenas 6 > 0 Yr~—= E tanh 1. PD(0). (4.14)

Note that in dimensional units w falls from O(E}) near the pole to O(Ey /o S)
near the equator. Hence in the mechanically driven solution («, = f,, = 0)
there is no flux of fluid across the equator and each hemisphere consists of a
separate mechanically driven cell with rising fluid near each pole and sinking
motion towards the equator. The poleward and equatorward flux of fluid occurs
only in the boundary layer.

In the general case T} and w; are regular at the equator but %; (and hence v,
from (4.1b)) are singular at the equator. The singularity in %; occurs in the interior
of the fluid and not on its boundaries.

For future reference it will be convenient to have explicit expressions for the
form of the interior solutions as E/E,, — 0. Note that if v, = v, Eg/E, = 0(3?).

In this limit

T7/00 = — (up—ug)sind
+$(0/00) (Hyp + Hy) (2 — §) + $(8/00) (Hy — Hp) (2 — 3)* — )

= o, 12 |sin 6|2 E}
2 JACLAGLE W S
* n§1 n(n+1)

PD (gin 6), (4.15)
while Uy = g+ 2(wyp —ug)

12 3 A
+520 fir HL’(T““‘?’)W

i Hp H) (=3P D)

-2 8 w10
and w;= 23:}? cols 5 ;9 ‘cos Osin O(uqp —ur) + cosd 121 o, PP (sin 0)} , (4.17)
where &, = l%nzn;— lf:n HT;HL cos 8 P,(sin 6) d6. (4.18)

Finally, if the upper boundary condition (2.2a) is replaced by a no stress con-
dition, the vertical velocity pumped out of the upper Ekman layer is reduced
from O(E’}) to O(Ey). The interior temperature field is purely conductive (to
O(o,8S)) and is not coupled to the motion. The velocity field can then be
computed from (4.8) with the condition #(0,0) = %;. As in the case discussed
above, u; and v; are singular in general at the equator while 7} is regular.
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5. The equatorial boundary layer

The singularities in the solutions for #; and »; reflect primarily the neglect of
the viscously controlled meridional velocity in the continuity equation and the
subsequent calculation of w;, T} and u;. To remove the unacceptable singularities
of the interior solution a boundary layer centred on ¢ = 0 is required, and the
detailed nature of this layer will depend on the ratio Eg/E,.

Case 1l Eg = O(Ey)

In this case it is found that the equatorial boundary layer has a thickness of
O(o g 8)t and that within this layer the total dynamic fields can be represented,

for 6> 0 u = (o5 8) "4y, ), (6.1a)
v = (Egjoy8)d(y, 2), (5.1b)
w = EgloyS8)id(n,2), (6.1¢)
T = Ty(0,2) + (o S} T3, 2), (5.1d)
P =p(0,2)+ (cx SR p(1,2), (5.1¢)
where 7 = 6(czg8)t
The boundary-layer variables satisfy the following scaled equations:
)
—gp =L % &
op By %
5 = -3 . 5.2b
= " oo Rk O (5:20)
7y P O0E, 1%
= = 37 R Wt £ o
% T +68/(ogS) '?2+0_HSQ Pl (5.2¢)
® = 3(&*T[on?), (5.2d)
on b
g +‘a‘7} = 0. (5.26)
I oS > 88y, By, %),

then 4 satisfies the relatively simple equation

oflers o4
o8| - )
As 7 > oo the solution of (5.3) must match with the interior solution, hence
02 o%u 2T
—timg 2 - _2Tr .
}Llﬂ Toe = MmO s 200250 (5-4)
Therefore (5.3) may be integrated once to yield
020 3272
T 5 = 10(), (5.5)
where
Bzul _ 2 fe,l,sinhl (z—3) | B,1,coshl (z—1)] .,
Ce) = 90 ==z [ cosh 4, sinh ¥, ] Pu(0).
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As long as (05 8)t > (82E;,)% boundary conditions for (4.5) on z = 0,1 may be
obtained by using the Ekman conditions (3.4) and (3.6) for the boundary layer
velocity. This yields the condition

=0 on z2=0,1 (5.6)
Letting, then, fi = Y 4, sinknz,
k=1

;, may be found in the form,

a, [ f Ao, (k"‘:)Ki (k”” )
f Ao, (’””7) (kngz)]mwm% ("’ " ) (5.7)

where y(x) and Ky(x 3(@) are the modified Bessel functions of the first and second
kind, of order one quarter. In (5.7)

1
C.= ZJ‘ C(z)sin knz dz,
0

while a, is as yet undetermined.
As 7 becomes large, it is easy to show through the use of the standard asymp-
totic forms for Iy and K that
lim @, = —(Cy/ym?k®?), (5.8)
'q-—»d)
which assures that 4(y, 2) will match to u;(0, z).
On the other hand, it is of interest to investigate the form of the solution near
the equator, i.e. as 7 becomes small.
Again using the asymptotic forms for I and K for small values of the argu-
ment, (5.7) becomes

b =i T8 [ g, (1) g O

+“k%[(%)—%ﬁ‘(k_ﬂ)i<; +(kﬂ)i<ﬂ> +o] @

Now for 6 < 0 the solution for % may be similarly found and can be written as

fl = § A (p) sin knz,

where =—0(cgS)t and where (%) is given as

() = [ dGuActL (km‘: ) Ky (Im)
f AL, (k"/‘ ) i(k"§ )]+ﬂk I, (k"/‘ ) (5.10)
and for small &
g (p) ~ " kﬂ)%f £3:9" (kﬂg) ag - %ﬂ*’

+br 75 NE [(kﬂ)—t(_li_)! - (%’—r)}(ﬁ+ (I—Cg)%é%+ ] (5.11)
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Matching 4, and 4,/26 on = 0 demands that o, = £ = 0. The solution for 9
may be found from 4, viz.

l

_ 12
29 on*

A
v =

andony =0 = % Z C.sinkmz = —10(2)

and matches with the solution for 6 < 0. It is also easy to show that @ = O(y)
as y goes to zero so that even the boundary-layer vertical velocity rather for-
tuitously matches at the equator. In general, higher-order corrections, or the
specifications of different boundary conditions at the equator will require the
addition of even thinner non-geostrophic or non-hydrostatic regions not con-
sidered here interior to the (o S)t layer.

The nature of the boundary-layer solution and the equatorial form of the
zonal velocity is of interest. If the interior temperature gradient is not zero at the
equator the singular part of the interior zonal velocity is odd about the equator.
It rises to a rather large value (o 8)~% as the equator is approached and then
falls to zero at the equator. The geostrophic balance for the zonal wind is main-
tained and the singularity at the equator is averted because the fluid adjusts
itself in the boundary layer to have a vanishing temperature gradient on = 0.

Case 2 Ey < Ej,

If B, < E, it is only possible to ignore the vertical derivatives in the viscous and
diffusive terms in the boundary layer if

og8S < (Eg[Ey)?, (5.12)

otherwise the vertical derivatives will in fact swamp the horizontal derivatives,
in effect, in the boundary layer. It is of interest to examine the nature of the
solution when (5.12) is not satisfied. In this case the Coriolis force due to the
poleward velocity must be balanced against the viscous forces due to wvertical
diffusion.

This leads to a boundary layer, surprisingly enough, of a very similar form as
in case 1. Its thickness is of order (0},S)t and within this region the dynamic
variables can be represented in the form,

u = (0 8)tu(y,z), (5.13a)
B
= (—o—_V—g—’)zﬁ(n,z), (5.13b)
= — 7 z)+£V—w (0) (5.13¢)
(o 87 T s |
T = Ty(0,2) + (o7 8)} T'(n,2), (5.13d)
p =pI(O,Z)+(UVS)i¢(77,Z), (5‘136)

where now 9 = 8(c, S)~%
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The barred variables satisfy

= %223 + 3o 8) %% (5.14a)
nu = — (op/om), (5.14b)

_ s o
gg =T+ (a,,JS)é_ ‘;(F;Vf)z Z;w+%i—f, (5.14¢)
m:%%’%g—fg—;(—a—}@;{’ (5.14d)
%’+% —o. (5.14¢)

In the representation for the variables in (4.14) it is important to note that in the
limit of vanishing Ey| By, Tt is a quadratic function of z and w; is independent of z.
It is convenient to eliminate all variables in favour of T' to yield

o2 27 2T
— - _—
[31;2“’ &2] e 0. (5.15)

On z = 0, 1 82T |9y &z is known, so it is convenient to write

T .
o k§ S,(9) sin kmz (5.16)

yielding

2 (8, 2“(& _ {32'_1’ . 32T(0)}
s (78) ~omer® () = 2 { 2 000y (-1 20

. oy u
=1;_1g—27rk=082(6 1) (= 1)k 0ﬁ(0,0)}. (5.17)

The general solution of (5.17) which is finite as # — co can be written in the form

S s, (1)

0%u; e 0%Ur
+;1_1,13k71[ 82(0,1)(-—1) - 82(0 0)]

K s kmry kmry? km{?
[ () () v () ()
: _ 1w 1 &7 =2 _ .
Since v = T = Inionen = ’El vy, 8in knz, (5.19)
we have, using (54.16),
02 2,
nin) = arKy (5 ) =Gt [0 (ZH @ (- 053 0,0)]

§—0

[ f Ao, (k"gz) K, (k"”) f AL, (k"” ) Ky (’“’gz)]. (5.20)

In the limit of small By /K, u; is a cubic function of z and hence ¢%u,/dz? is
a linear function of z. Thus, if

2 ) 2
Py =3 (8_u1_) sin kmrz
k=1 2

022 022



414 J. Pedlosky

it is easy to show that

(Efﬁf)k - {aa:‘; 6,1)(— 1)k—3ﬂ (0, 0);. (5.21)

022

Therefore,
s 7 . km(? kmy?
v = —4—- hm 0u1k {f dgﬂégéI% ( 9 ) K% ( 277 )

T f I (’””7 ) K, (klzg-2 )} + otk (7”’7772 ) . (5.22)

27.2 2 2
T, = ’—’2—’“ Hm Guy, { f AP, (k”g ) K, (k’;” )

6—0
kmry? km§? 20, kmrn?
f dgqﬁzgd( )K%( 3 )}+k2;2mKi( 5 ) (5.23)

1

where u1k=2f uz(0, 2) sin krzdz
0
1

and ﬂk=2f u(y, z)sin kmzdz.
0

The asymptotic form of %, as 7 becomes large is easy to work out, and for large
it can be shown that Uy ~ (O)7) ug, = (oS gy (5.24)
Since the scaling amplitude of % is greater than u; by (o 8)~%, (5.24) shows that
the boundary-layer zonal velocity will smoothly match into the interior.
For small %, (5.22) and (5.23) become
m2k?

k
Upy ~ 7—]?— hm (Ourln? f (K, ( S ) é—“— hm [Oug)7®

; k)
JZ[((") ; —((’;)) +00A). (6.20

1
4
%=1 \/2 hm [Gqu]n (fem ) f (K, (""’€ )d§ A lim [, 7

o7 [ (kem)—% (kn)
+j2[ 5T 77+0(774)]. (5.26)

1!
Now the appropriate solutions for & < 0 are identical to (5.22) and (5.23) with
the exception that (Gu;;) is replaced by — (Guy,), 7 isreplaced by p = — (o, 8)%
while o, is replaced by g,.. Matching the zonal and northward velocities, as well
as the zonal shear yields only

o = B

However to match the temperature on 6 = 0 to order (¢0,8)¢ requires that
ow[oz and hence 6980 be continuous and this demands that

a = pfr =0,
which completes the solution.
It is quite remarkable that the structure of the equatorial region is so similar

in the two cases Ky = O(E)) and Ey € E,. Of course there are important
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differences. When Ej < E,, the meridional velocity »; is much less singular at
the equator than in the case when Eg = O(E}). This is simply because in the
latter case v; ~ K 9%u;/26% while in the former v; ~ Ej, 0%u;/022. This reflected in
the differing scaling amplitudes for v in the two cases discussed in this section.
Similarly, » vanishes more rapidly at the equator in the second case for essentially
the same reason. For since 7% = 0%u/é2% %o is O(y) as 5 — 0. Before % vanishes
at the equator it rises like 61 to an amplitude (o, 8)-% larger than its interior
value and only then returns to zero.

The appearance of St (for oy or g}, of O(1)) as the natural non-dimensional
length scale for the boundary layer can be explained simply as follows.

When the Rossby deformation radius, Ly = (9aAT), D)}/2Qsin6, is of the
same order as the length scale, I, of the motion the constraints of stratification and
rotation are equally important. In the boundary layer near the equator the
singularity in the geostrophic solution is removed by vorticity diffusion when
internal vortex tube stretching, proportional to éw/¢z becomes coupled to the
temperature field. This can only occur when [ = O(Ly) or when

I|R = sin6 = (gaAT, D)t/(2Q)} = SE.

In general, this length scale, for the coupling of density and vorticity fields,
will naturally occur as an intrinsic scale criterion. When sin 8 is O(1) the critical
length scaleis 8% and occursin the boundary-layer analysis of Barcilon & Pedlosky
(1967) and in fact is the natural length scale for baroclinic instability waves for
similar coupling reasons (see, for example, Eady 1949). In equatorial regions, as
in this paper, the scale is St and this scale also appears as a natural length scale
for baroclinic planetary waves centred around the equator (see for example
Blandford 1966).

This work was completed while I was supported by a Sloan Foundation fellow-
ship and visiting the mathematics department at Imperial College, London.
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