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A linear theory is presented for the steady, axially symmetric motion of a strati- 
fied fluid in & narrow, rotating spherical annulus with a spherically symmetric 
gravitational field. 

The fluid is driven by a combination of differential rotation of the two shells 
and differential heating applied at  the surfaces of the spheres. 

It is shown that the effect of stratification becomes increasingly important 
at  lower latitudes with the Ekman layers on the spheres’ surfaces fading in 
strength as the geostrophic interior velocities themselves tend toward the shell 
speeds at  lower latitudes. 

The singularities in the geostrophic solutions at  the equator are removed by 
a boundary layer whose detailed structure depends on the ratio of horizontal to 
vertical mixing coefficients of momentum and heat. 

1. Introduction 
The fascinating nature of the dynamics of rapidly rotating fluids is due pri- 

marily to the dominance of Coriolis forces acting on the fluid’s motion in planes 
perpendicular to the rotation axis. For a fluid constrained to flow in thin sheets 
on the surface of a sphere (a case of obvious geophysical interest) the geometrical 
constraint inhibits velocities and accelerations in the direction perpendicular to 
the sphere’s surface, and so the important Coriolis forces are those which act on 
the velocities tangential to the sphere’s surface. Since these horizontal Coriolis 
forces depend on the local component of the rotation perpendicular to the sphere’s 
surface and hence on the sine of the latitude, the Coriolis forces must become 
small and finally vanish as the equator is approached. 

The equatorial region is thus a very special region in which the dynamical 
nature of the flow although affected by rotation may be quite different from that 
at higher latitudes where the rotational constraint more powerfully asserts itself. 
Questions of obvious interest then are the extent of the equatorial region, the 
nature of its dynamics and the manner by which the motion at  higher latitudes, 
dominated by rotation, merges into the equatorial region. 

In  an effort to throw some light on these questions this paper considers the 
steady, axially symmetric motion of a thin stably stratified layer of fluid between 
two concentric spherical shells. The fluid motion is produced by both differential 
rotation of the shells a,nd an applied surface differential heating. The introduction 
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of stratification is an attempt to consider a model of greater geophysical interest. 
The motion of a homogeneous fluid in a similar geometry has been considered by 
Stewartson (1966) (without any restriction of the thinness of the shell of fluid.) 
The motion, as in the study of Stewartson’s, is limited to almost rigid rotation; 
that is, the motion relative to the mean rotation of the spheres is assumed to be 
sufficiently small so that a linear dynamical theory is valid. 

The axially symmetric motion investigated in this paper may also be of interest 
in the context of tropical meteorology. Although the general circulation of the 
earth’s atmosphere in middle latitudes is very asymmetric, this asymmetry 
becomes less pronounced in equatorial regions where an axially symmetric model 
may be appropriate (Palmen 1963) as a first approximation. Moreover, as 
Charney (1968) has pointed out theories based on instability arguments for the 
development of smaller scale features of the tropical circulation (such as the 
inter-tropical convergence zone) which depend on other factors such as heat 
released by condensation of water vapour, may well require first the results of 
a ‘dry’ tropical circulation as a starting point for the mean field. 

In  a recent paper (Barcilon &, Pedlosky 1967) it was shown that a critical 
parameter governing the nature of the bulk of the fluid motion for a stably 
stratified rotating fluid in ‘flat’ geometries was the ratio d / E h ,  where 

vagAT V and E = ~ d3= - 
K Q 2 L  QL2’ 

where a is the coefficient of thermal expansion, g the acceleration of gravity, 
ATIL the basic stable temperature gradient, f2 the mean rotation, v the kinematic 
viscosity, K the thermal conductivity while L is a characteristic scale. When the 
ratio is large the fluid acts, in the main, as if it were substantially stratified. Now 
vSIE4 is proportional to Q-*, and one might suppose that for the sphere f2 should 
be replaced by LR sin 6’ where 8 is latitude. This is indeed what will be shown to be 
the case by detailed calculation below, with the result that the fluid acts more and 
more substantially stratified in the sense discussed in Barcilon & Pedlosky (1967) 
as the equator is approached. 

2. The model 
Consider a spherical annulus of thickness D, the inner sphere of which has 

radius R, where D < R. The spherical shells are very nearly rotating at  angular 
velocity Q about an axis passing through the poles of the sphere. The co-ordinate 
system is chosen so that the directions north, east, etc., have their usual meanings. 
The co-ordinate 6’ measures latitude, r is the spherical radius of a field point 
while (u, v, w) are the velocities to the east, north and vertical, respectively. The 
fluid in the spherical annulus is assumed to be stably stratified. The direction of 
the effective gravitational force is taken to be radial which implies that the 
centrifugal force due to the mean rotation is neglected. This requires that 
Q2R2/gD < 1. Furthermore, the fluid density variations are assumed to be 
linearly related to its temperature variations which in turn are considered small 
enough for a Boussinesq approximation to hold, i.e. for the fluid to be very nearly 
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incompressible, and only the buoyancy effects of variable density are considered 
in the momentum equations. In order to consider a model of geophysical rele- 
vance the viscosity and diffusivity of temperature must be considered as para- 
metrizations of small-scale turbulent mixing processes. It is natural therefore 
to allow that the transport coefficients need not be the same for horizontal as well 
as vertical fluxes of momentum and heat. The theory will be developed with the 
ratio of the horizontal to vertical mixing coefficients as a free parameter and the 
solutions in various parameter regimes will be discussed in detail. It should be 
pointed out that the difficulty in producing the spherically symmetric gravita- 
tional force of this theory in the laboratory de-emphasizes the importance of what 
might be called the laboratory situation in so far as the viscosity coefficients are 
concerned. 

Non-dimensional variables, denoted by primes are defined as follows : if p ,  p 
and T are the pressure, density and temperature of the fluid then 

T = R + 6Rx‘, 
(u, v) = u(uye, 2’1, vye, x i ) ) ,  

P = PoU- - To)), 

w = SUw’(e,x’), T = TO+AT,z’+(2QRU/gaD)T’(8,z’), 

p = po-pogDz’+a!AT,pogD2~~’2+ 2flURpop’(0,~’), 

where S = D/R, a! is the coefficient of thermal expansion, U is a horizontal 
velocity scale which will later be related to the boundary conditions and To, po 
and po  are constant reference levels for T, p and p .  Note that the dependent 
variables are functions of z‘ = r - RIB.  

The equations of motion in terms of the non-dimensional variables appropriate 
for linear, axially symmetric steady motion (after dropping the primes from the 
dimensionless co-ordinates) are 

( 2 . l a )  

cos e - - - aP -sucose = --+T+- -- 
a Z  ”2 [cO:e: 20 aw cos2e “ 1  

(2.ld) 

(2.le) 

In  these equations the spherical radius r has been approximated by the constant 
R when undifferentiated. 

26-2 



404 J .  Pedlosky 

The following non-dimensional parameters have emerged: 

EH = v,/t2R2, 

Ev = vv/t2D2, 

6 = D/R,  

the ‘horizontal’ Ekman number; 

the ‘vertical’ Ekman number; 

the aspect ratio; 

#=- agATv the stratification parameter; 
Q2R2 ’ 

gH = v H / K H ,  

flv = VVlKV, 

the ‘horizontal’ Prandtl number; 

the ‘vertical’ Prandtl number; 

where vv, K ~ ;  Y,, K~ are the mixing coefficients for momentum and heat in the 
vertical and horizontal directions respectively. 

The boundary conditions are : 

(u, v, w) = (a,,(@, 0,O) on z = 1, (2.2u) 

(a, u, w) = (uL(B), 0,O) on z = 0, ( 2 . 2 b )  

while on the outer and inner spheres the radial heat flux will be specified, i.e. 

aT 
- = HT(@ on z = 1, 
8.2 

- = H,(B) on z = 0. 
aT 
82 

(2 .2c)  

( 2 . 2 4  

Naturally the solution must satisfy conditions of regularity at  the poles. 

parameters, but for convenience the additional restriction that 
In the analysis which follows, EH, Ev, S and 6 will all be taken to be small 

8 %  E$ 
will be observed. 

The boundary condition ( 2 . 2 ~ )  could easily be replaced by a condition specify- 
ing the stress on z = 1, which might be more relevant in a geophysical context. 
The condition ( 2 . 2 ~ )  is chosen because the resulting motions provide a more 
interesting interplay between the convection of heat and the dynamics, The 
alternate possibility of specifying the stress on z = 1, while leading to a rather 
trivial interior flow, in fact will yield the same sort of equatorial problem as given 
by the conditions (2 .2 ) .  This will be discussed below. 

Since Ev and EH are small the approximate solutions to be found will be of 
boundary-layer type. 

Finally, the scaling velocity U is chosen such that 

ago2 U=- 
2QR H07 

where Ho is a characteristic value of the latitudinally varying applied heat flux. 
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3. The Ekman layers 

may be written as 
In regions where 8 = O( l), i.e. removed from the equator, the dynamic variables 

u = uA8, 4 + .ii,(8, Q) + . i idO,  Q), ( 3 . 1 ~ )  

2, = E V M ,  z> + v",v, Cl) + v"LP, 61,  ( 3 . l b )  
w = E b W I ( 8 , Z )  + E b W ,  c-1) + ~ b % ( O ,  6 1 ,  ( 3 . 1 ~ )  

P = P#, 2) + @17& el) + m w ,  61, ( 3 . l d )  
T = q ( e ,  z )  + E $ ~ ~ K & ( O ,  CJ +Eb+@L(e, c2). ( 3 . l e )  

The subscripted I variables represent the dynamic variables in the interior 
of the fluid removed from the direct viscous effects of the boundaries. The tilde 
variables represent the necessary correction functions which must be added to 
the interior variables within the Ekman layers near z = 0 and z = 1. The T 
subscripted tilde variables are the boundary layer corrections required near 
z = 1 and go to zero as 

becomes large. Similarly the L subscripted tilde variables represent the Ekman 
layer corrections near z = 0 and go to zero as 

Q = (1-Z)lEB 

c 2  = z / E b  

becomes large. The characteristic thickness of the Ekman layer is, of course E$. 
The equations for the lowest-order correction functions in the layer near z = 0, 

for example, are, 
-GLsin8 = --) ( 3 . 2 ~ )  

1 a2cL 

2 ac; 

(3.2b) 

( 3 . 2 ~ )  

(3 .2d )  

(3 .2e)  

(3 .3a )  
(3 .3b)  

where sgne = sinO/lsinel. 

Since wI(8,0) + GL(e, 0) = 0, we must have 
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which provides one boundary condition for the interior flow on z = 0. According 
to ( 3 . 1 ~ )  the correction to the heat flux in the Ekman layer is O(c,S); thus if 
C T ~ S  < 1 the interior temperature must itself satisfy (2.24, i.e. 

( G P Z )  ( @ , O )  = H L ( 4 ,  (3.5) 
which provides the other boundary condition for the interior flow on x = 0. In 
fact the estimate for the amplitude for the Ekman layer correction temperature 
is conservative for, as we shall see, when rvS > EB, w is O(E,/r,S) so that the 
heat flux correction due to the Ekman layer is never greater than Eb. 

As the equator is approached the Ekman layer analysis becomes increasingly 
invalid. The thickness of the layer is proportional to Isin81-*. In this linear 
analysis the approximations fail when 

8 = O(PE,)*, 
which is when the Coriolis force Swcos8 in ( 2 . l a )  can no longer be neglected. 
When 6 = O(1) and v, = v, this condition becomes identical with the criterion 
for the validity of the Ekman layer results deduced by Stewartson (1966). 

We shall see that, because of the stratification, this limit in latitude on the 
Ekman layer validity is too conservative. One of the more interesting features 
of the following analysis ( $ 4 )  is the effect that stratification has in extending the 
region of validity of the Ekman layer results. 

The boundary layer near z = 1 is essentially the same as near x = 0 and yields 
as boundary conditions for the interior flow 

sgnB 8 (zcz(#, l)-zcT) cos0 
2 ~ 0 s o a e  \sin814 ’ w,(O, 1) = - - 

4. The geostrophic interior 
In the interior of the fluid, at  latitudes such that 8 = O(l),  the dynamic 

variables are represented by the I subscripted variable which satisfy the follow- 
ing interior equations to lowest order if 6 < Eb. 

( 4 . 1 ~ )  U, sin 8 = - apZp0, 

(4.lb) 

Tz = aPzlax, (4.1 c) 

(4 . ld)  

(4 . le)  

Thus to O(E$) w, is a function only of 13 and with (3.4) and (3.6) it may be written 
in terms of T,, viz: 
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It is convenient to introduce the variable G, defined as follows, 

where y2 = EH~v/EvcrH.  In  terms of G, aT,/aO is 

The reason for introducing G is that it satisfies the relatively simple equation, 
derivable from (4.lc),  (4.2) and (4.3), viz. 

i a  
cos e ae 

(4.5) 

The solution for G may be found in a series of associated Legendre functions of 
ordsr 1. The solution for the more physically meaningful interior temperature 
gradient can be found and can be shown to be 

where 

Since 

from (3.4), (3.6) and ( 4 . l d )  while 
. auI aTI sm8- = -- 

az ae 
from ( 4 . l a )  and ( 4 . l c ) ,  u,(O,z) may be found from (4.6) and is 
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The coefficients a, and /I, can be found using (3.5) and (3.7), i.e. 

There are several features of interest in the general nature of this interior 
solution. 

The most obvious feature is the singularity in uz as B tends to zero. This occurs 
for those terms in the sum in (4.9) for which P:)(O) + 0, i.e. for n odd. Since 
Pg’(sin 8) is an even function of 8 for n odd that part of the solution for uz which 
is singular at 8 = 0 is odd about the equator and is O(0-l) as the equator is ap- 
proached. It is also interesting to observe that this singularity is present only in 
that part of the solution which is thermally driven. If HL = HT = 0 then 
a, = /I, = 0 and the solution for uI would consist solely of the first two terms of 
(4.9) which are non-singular across the equator. This mechanically driven solution 

(4.11) 

is quite simple and informative. It is remarkably similar to  the solution found 
for a rotating stratified cylinder of fluid by Barcilon & Pedlosky (1967) .  When 
the fluid is unstratified the interior velocity is simply the mean of uT and uL for 
then h = vvS/2y2 IsinOI%E$ is zero. When vvX & 2y2Et lsin8Ii the interior 
zonal velocity is no longer independent of z but varies linearly from u, on z = 0 
to up on z = 1. Thus as the fluid becomes more and more substantially stratified 
the interior velocity itself satisfies the no-slip boundary conditions on z = 0, 1 
with the Ekman layer velocities simultaneously becoming weaker. The very 
important feature of the spherical geometry is that the condition (4 .1  1) becomes 
more readily satisfied as B goes to zero. Hence, in the mechanically driven 
solution the effect of the stratification becomes more important as the equator 
is approached and the Ekman layer corrections are reduced. Thus, although the 
Ekman layer analysis fails a t  the equator, it is of no consequence, for the effect 
of the stratification eliminates the need for the Ekman layer. This is true for the 
general solution, i.e. for large h(0) (8 + 0) 

u, N ZC, + Z(UT - UJ 

- +) - 2(2 - 4) sinh +Z, m 

cosh 81, -1 
Thus, in general uz+uL on z = 0, 

uI+uT on z = 1. 
(4.13) 

as 8 + 0. The Ekman layer t o  lowest-order fades away as the equator is 
approached. 
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If a stream function for the interior meridional motion is defined such that 

409 

(4.14) 

Note that in dimensional units w falls from O(Ei,) near the pole to O ( E v / ~ , S )  
near the equator. Hence in the mechanically driven solution (a, = p, = 0) 
there is no flux of fluid across the equator and each hemisphere consists of a 
separate mechanically driven cell with rising fluid near each pole and sinking 
motion towards the equator. The poleward and equatorward flux of fluid occurs 
only in the boundary layer. 

In the general case TI and wz are regular at  the equator but uz (and hence vI 
from (4.1 b ) )  are singular at  the equator. The singularity in uz occurs in the interior 
of the fluid and not on its boundaries. 

For future reference it will be convenient to have explicit expressions for the 
form of the interior solutions its E,IE, + 0. Note that if vv = vH, EH/Ev = 0(cY2). 

In  this limit 

aTI/ae = - (uT - uL) sin e 

while uz = ZGL+Z(U,-u,) 

(4.15) 

sin 0 

1 

i a  
6 ae 
i a  

+--((H,-H-) 

- 4  (HT + ((2- w- $1 

- 2 z , 1 n ( n + l ) s i n e  
a, 1; Eb I sin 8 I * ( z  - 4) 

m 
and wI = cos19sin19(u~-u,)+cos8 2 a,P:)(sinO) 

n = l  

(4.16) 

where (4.18) 

Finally, if the upper boundary condition ( 2 . 2 ~ )  is replaced by a no stress con- 
dition, the vertical velocity pumped out of the upper Ekman layer is reduced 
from O(E$) to O(E,). The interior temperature field is purely conductive (to 
O(cr,S)) and is not coupled to the motion. The velocity field can then be 
computed from (4.8) with the condition u(8,O) = u,. As in the case discussed 
above, uI and vI are singular in general at the equator while Tz is regular. 
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5. The equatorial boundary layer 
The singularities in the solutions for uI and vI reflect primarily the neglect of 

the viscously controlled meridional velocity in the continuity equation and the 
subsequent calculation of wI, TI and uI. To remove the unacceptable singularities 
of the interior solution a boundary layer centred on 0 = 0 is required, and the 
detailed nature of this layer will depend on the ratio EHIEV. 

Cuse 1 EH = O(Ev) 
In  this case it is found that the equatorial boundary layer has a thickness of 
O(CT,#)* and that within this layer the total dynamic fields can be represented, 

( 5 . 1 ~ )  for 0 0: 

2, = ( E H / g H s )  e(q, z) ,  ( 5 . l b )  
w = EHI%S)W7, z) ,  ( 5 . 1 ~ )  

T = TI((), 2) + (%S)f !fYq, 4,  (5.ld) 
= ~ I ( o , x ) f ( a H S ) t i 3 ( ~ , z ) ,  (5.le) 

= ( f l H # ) - * & ( T , z ) ,  

where 7 = e(vH#)-'. 
The boundary-layer variables satisfy the following scaled equations : 

( 5 . 2 ~ )  

( 5 . 2 b )  

( 5 . 2 ~ )  

i % a v ^  -+- = 0. az a7 

If g H s  9 (6EH, s2), 
then & satisfies the relatively simple equation 

( 5 . 2 ~ )  

As t-j -+ co the solution of (5.3) must match with the interior solution, hence 

Therefore (5.3) may be integrated once to yield 

where 
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As long as (uH8)ib > (PE,)* boundary conditions for (4.5) on x = 0 , l  may be 
obtained by using the Ekman conditions (3.4) and (3.6) for the boundary layer 
velocity. This yields the condition 

a=O on z = O , l .  
00 

Letting, then, a = aks inhz ,  

a k  may be found in the form, 
k=l 

where I$(%) and Kg(x)  are the modified Bessel functions of the first and second 
kind, of order one quarter. In  (5.7) 

c k  = 2 C(x) sin k m d z ,  1: 
while a k  is as yet undetermined. 

totic forms for I4 and Kg that 
As 7 becomes large, it is easy to show through the use of the standard asymp- 

Em hk = - (Ck/?j+k2), (5-8) 

On the other hand, it is of interest to investigate the form of the solution near 

Again using the asymptotic forms for 14 and K i  for small values of the argu- 

1)+* 

which assures that &(q, z )  will match to ur(8,x). 

the equator, i.e. as 7 becomes small. 

ment, (5.7) becomes 

Now for 8 < 0 the solution for may be similarly found and can be written as 
00 

a =  a,(p)sinknz, 
k = l  

where p = - 8(a,X)-4 and where a,(p) is given as 



412 J .  Pedloslcy 

Matching ak and aak/a8 on 7 = 0 demands that ak = pk = 0. The solution for 8 
may be found from 4, viz. 

1 asp 
27 ar2 

2, = --- 

1 "  
2 k = l  

and on 7 = 0 

and matches with the solution for 0 < 0. It is also easy to show that dl = O(7) 
as y goes to zero so that even the boundary-layer vertical velocity rather for- 
tuitously matches at the equator. In  general, higher-order corrections, or the 
specifications of different boundary conditions at  the equator will require the 
addition of even thinner non-geostrophic or non-hydrostatic regions not con- 
sidered here interior to the ( v H S ) f  layer. 

The nature of the boundary-layer solution and the equatorial form of the 
zonal velocity is of interest. If the interior temperature gradient is not zero at  the 
equator the singular part of the interior zonal velocity is odd about the equator. 
It rises to a rather large value (crHS)-a as the equator is approached and then 
falls to zero at the equator. The geostrophic balance for the zonal wind is main- 
tained and the singularity at  the equator is averted because the fluid adjusts 
itself in the boundary layer to have a vanishing temperature gradient on 0 = 0. 

0 = -- Cksin knx = - +C(z) 

Case 2 EH < Ev 
If EH < Ev it is only possible to ignore the vertical derivatives in the viscous and 
diffusive terms in the boundary layer if 

crHs < (EH1EF')2, (5.12) 

otherwise the vertical derivatives will in fact swamp the horizontal derivatives, 
in effect, in the boundary layer. It is of interest to examine the nature of the 
solution when (5.12) is not satisfied. In  this case the Coriolis force due to the 
poleward velocity must be balanced against the viscous forces due to vertical 
diffusion. 

This leads to a boundary layer, surprisingly enough, of a very similar form as 
in case 1. Its thickness is of order ( c r v f l ) f  and within this region the dynamic 
variables can be represented in the form, 

u = (vvS)-fE(q,2), ( 5 . 1 3 ~ )  

(5.13 b )  

(5.13 c) 

where now 7 = O(w,S)-& 
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The barred variables satisfv 
Y 

E H  a2u 
(5.14a) 1 a 2 5  

-qs = --+*(v,#)*-?, 
2 a22 Ev a7 
75 = - (aF/a7), (5.14b) 

(5 .14~)  
s - PE E azE EE; a2, _ -  a t g i + -  H Vp+-- 

az a72 2(+.4= a22 9 (vvs)& 
+ 

(5.14d) 
- ia2P 1 E H v v  1 a2T 

2 E, vH (v,~)) 3 2  

(5.14e) -+- = 0. 

In  the representation for the variables in (4.14) it is important to note that in the 
limit of vanishing EHI E,, TI is a quadratic function of z and wI is independent of z. 

w=--+----- 
2 a22 

aiz a@ 
a2 aq 

It is convenient to eliminate all variables in favour of T to yield 

(5.15) 

On z = 0 , l  a2!4?/ayaz is known, so it is convenient to write 

(5.16) 

yielding 

The general solution of (5.17) which is finite as 7 + co can be written in the form 

% = 2Ctk’?$K4 (T) k q 2  
T 

e-+o 

(5.19) 

In  the limit of small E,IE,, uI is a cubic function of z and hence a2uI/az2 is 
a linear function of 2.  Thus, if 
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it  is easy to show that 

(5.21) 

Therefore, 

where 

and 

The asymptotic form of Uk as 7 becomes large is easy to work out, and for large 7 

(5.24) it  can be shown that 

Since the scaling amplitude of S is greater than uI by (cvS)-*, (5 .24)  shows that 
the boundary-layer zonal velocity will smoothly match into the interior. 

- 
U k  ( O h )  UZk = ( ~ V f l F U Z k .  

For small 7, (5.22) and (5.23) become 

Now the appropriate solutions for 8 < 0 are identical to (5.22) and (5.23) with 
the exception that ( h z k )  is replaced by - (Ou,,), 7 is replaced by ,u = - B(avS)-& 
while a k  is replaced by ,8k. Matching the zonal and northward velocities, as well 
as the zonal shear yields only 

ak = ,8k- 

However to match the temperature on 0 = 0 to order (uvS)4 requires that 
a@/az and hence %/a0 be continuous and this demands that 

which completes the solution. 
It is quite remarkable that the structure of the equatorial region is so similar 

in the two cases EH = O(E,) and EH < Ev. Of course there are important 

ak = pk = 0, 
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differences. When EH < Ev the meridional velocity vz is much less singular at 
the equator than in the case when EH = O(E,). This is simply because in the 
latter case vz N EH a2uI/a02 while in the former vI N E,a2uI/az2. This reflected in 
the differing scaling amplitudes for v in the two cases discussed in this section. 
Similarly, u vanishes more rapidly at  the equator in the second case for essentially 
the same reason. For since y;i? = +a2S/a.z2 E/V is O(7) as y --f 0. Before S vanishes 
at the equator it rises like 0-1 to an amplitude (vvS)-& larger than its interior 
value and only then returns to zero. 

The appearance of 84 (for a, or av of O(1)) as the natural non-dimensional 
length scale for the boundary layer can be explained simply as follows. 

When the Rossby deformation radius, LR = (gaAT,D)*/ZM sin 8, is of the 
same order as the length scale, I ,  of the motion the constraints of stratification and 
rotation are equally important. In  the boundary layer near the equator the 
singularity in the geostrophic solution is removed by vorticity diffusion when 
internal vortex tube stretching, proportional to awlax becomes coupled to the 
temperature field. This can only occur when 1 = O(L,) or when 

1/R = sin8 = (gaATvD)*/(2M)4 = St ,  

In  general, this length scale, for the coupling of density and vorticity fields, 
will naturally occur as an intrinsic scale criterion. When sin 8 is O( 1) the critical 
length scale is 84 and occurs in the boundary-layer analysis of Barcilon & Pedlosky 
(1967) and in fact is the natural length scale for baroclinic instability waves for 
similar coupling reasons (see, for example, Eady 1949). In  equatorial regions, as 
in this paper, the scale is 8* and this scale also appears as a natural length scale 
for baroclinic planetary waves centred around the equator (see for example 
Blandford 1966). 

This work was completed while I was supported by a Sloan Foundation fellow- 
ship and visiting the mathematics department at  Imperial College , London. 
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